Model Studies toward the Total Synthesis of the *Lycopodium* **Alkaloid Spirolucidine**

LETTERS 2001 Vol. 3, No. 20 ³²¹⁷-**³²²⁰**

ORGANIC

Daniel L. Comins* and Alfred L. Williams

Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204 daniel_comins@ncsu.edu

Received August 9, 2001

ABSTRACT (Vycor filter) $CH₃CN$ ĊO₂Ph CO₂Ph <u>Дя</u> 17

A strategy for the synthesis of the spirocyclic core of spirolucidine was explored through a model study. The diene 4a was prepared and photolyzed to give the desired [2 + **2] photoadduct 17 containing the correct relative stereochemistry corresponding to spirolucidine.**

Spirolucidine (**1**) was isolated from *Lycopodium lucidulum* by Ayer and co-workers, and the relative stereochemistry of the alkaloid was determined by chemical, spectroscopic, and X-ray studies.¹ No biological or synthetic studies have been previously reported on this complex natural product. As part of our program directed at developing *N*-acyl-2,3 dihydro-4-pyridones as chiral building blocks for alkaloid synthesis, $2,3$ we have been exploring strategies for the construction of spirolucidine. Herein is reported a model study of a photochemical approach to the spirocyclic core of **1**.

spirolucidine

One potential route to **1** involves the preparation and cyclobutane ring opening of intermediate **2**, which would arise from an intramolecular $[2 + 2]$ photocyclization of dihydropyridone **3** (Scheme 1). To determine the feasibility

of the key photocyclization step, a model study was carried out.

Dihydropyridone **4a** was chosen as a model photosubstrate that would mimic **3** in the photocycloaddition step. The synthesis of **4a** was accomplished by the coupling of 6-iodo-2,3-dihydro-4-pyridone **5** with alkyne **6** followed by selective reduction and desilylation (Scheme 2).

Intermediate **5** was prepared using 1-acylpyridinium salt chemistry.2 Treatment of 4-methoxypyridine with phenyl chloroformate and isobutylmagnesium chloride provided a crude 1-phenoxycarbonyl-1,2-dihydropyridine that was converted to the Boc derivative **7** with *t*-BuOK in THF.4a The overall yield for the two-step process was 95% (Scheme 3).

Directed lithiation of dihydropyridine **7** with *n*-BuLi, addition of iodine, and workup with oxalic acid afforded the 6-iodo-2,3-dihydro-4-pyridone **8** in 75% yield. A carbamate exchange^{4b} was effected in two steps by removal of the *N*-Boc group with TMSI to give **9**. Deprotonation and reacylation with phenyl chloroformate provided intermediate **5**.

The alkyne **6** was prepared as depicted in Scheme 4. The silylpyridine **10** was prepared from 2-chloropyridine in two

steps as previously described.⁵ Regioselective reduction of 10 with phenyl chloroformate and tributyltin hydride⁶ provided a 75% yield of the 1,2-dihydropyridine **11**. The next step in the synthesis required a regioselective functionalization at C-3 of **¹¹**. The Vilsmeier-Haack reaction afforded the desired aldehyde **12** in 80% yield. In the absence of a C-5 TIPS group, this type of 1,2-dihydropyridine formylates regioselectively at C -5.^{5,7} Luche reduction of the aldehyde, regioselective catalytic hydrogenation of the 3,4 double bond, and Swern oxidation provided aldehyde **13**. The desired alkyne intermediate **6** was prepared by adding 13 to the Seyfert-Gilbert reagent⁷ and *t*-BuOK in THF at -78 °C.

The two heterocycles, **5** and **6**, were joined using a Sonogashira reaction.⁹ In the presence of palladium(II) iodide, triphenylphosphine, and copper(I) iodide, crosscoupling occurred to give an 87% yield of diastereomers **14** (Scheme 5). With the TIPS group still protecting its appended double bond, chemoselective reduction of the alkyne could be carried out. Catalytic hydrogenation of **14** gave dihydro-

⁽¹⁾ Ayer, W. A.; Ball, L. F.; Browne, L. M.; Tori, M.; Delbaere, L. T. J.;Silverberg, A. *Can. J. Chem.* **1984**, *62*, 298.

^{(2) (}a) Comins, D. L.; Joseph, S. P. In *Ad*V*ances in Nitrogen Heterocycles*; Moody, C. J., Ed.; JAI Press Inc.; Greenwich, CT, 1996; Vol. 2, pp 251-294. (b) Comins, D. L.; Joseph, S. P. In *Comprehensive Heterocyclic Chemistry*, 2nd ed.; McKillop, A., Ed.; Pergamon Press: Oxford, England, 1996; Vol. 5, pp 37-89.

⁽³⁾ For recent and leading references, see: (a) Comins, D. L.; Zhang, Y. *J. Am. Chem. Soc.* **1996**, *118*, 12248. (b) Comins, D. L.; Chen, X.; Morgan, L. A. *J. Org. Chem.* **1997**, *62*, 7435. (c) Comins, D. L.; LaMunyon, D. H.; Chen, X. *J. Org. Chem.* **1997**, *62*, 8182. (d) Comins, D. L.; Green, G. M. *Tetrahedron Lett.* **1999**, *40*, 217. (e) Comins, D. L.; Libby, A. H.; Al-awar, R. S.; Foti, C. J. *J. Org. Chem.* **1999**, *64*, 2184. (f) Comins, D. L.; Brooks, C. A.; Al-awar, R. S.; Goehring, R. R. *Org. Lett*. **1999**, *1*, 229. (g) Comins, D. L.; Zhang, Y.; Joseph, S. P. *Org. Lett.* **1999**, *1*, 657. (h) Comins, D. L.; Fulp, A. B. *Org. Lett.* **1999**, *1*, 1941. (i) Kuethe, J. T.; Comins, D. L. *Org. Lett.* **2000**, *2*, 855. (j) Huang, S.; Comins, D. L. *J. Chem. Soc.*, *Chem. Commun.* **2000**, *7*, 569. (k) Comins, D. L.; Huang, S.; McArdle, C. L.; Ingalls, C. L. *Org. Lett.* **2001***, 3*, 469. (l) Comins, D. L.; Sandelier, M. J.; Abad Grillo, T. *J. Org. Chem.* In press.

^{(4) (}a) Comins, D. L.; Weglarz, M. A.; O'Connor, S. *Tetrahedron Lett.* **1988**, *29*, 1751. (b) The *N*-Boc group was necessary to effect the directed lithiation of **7**; however, subsequent carbamate exchange, $8 \rightarrow 5$, was needed to provide easily purified intermediates and crystalline photocycloaddition products.

⁽⁵⁾ Comins, D. L.; Myoung, Y. C. *J. Org. Chem.* **1990**, *55*, 292.

⁽⁶⁾ Tributyltin hydride has been used to reduce *N*-acylisoquinolinium salts to dihydroisoquinolines, see: Yamaguchi, R.; Hamasaki, T.; Utimoto, K. *Chem. Lett.* **1988**, 913.

^{(7) (}a) Al-awar, R. S.; Joseph, S. P.; Comins, D. L. *J. Org. Chem.* **1993**, *58*, 7732. (b) Comins, D. L.; Herrick, J. J. *Heterocycles* **1987**, *26*, 2159.

^{(8) (}a) Gilbert, J. C.; Weerasooriya, U. *J. Org. Chem.* **1979**, *48*, 4155. (b) Brown, D. G.; Velthuisen, E. J.; Commerford, J. R.; Brisbois, R. G.;

Hoye, T. R. *J. Org. Chem.* **1996**, *61*, 2540. (9) Sonogashira, K. In *Comprehensi*V*e Organic Synthesis*; Trost, B. M.,

Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 3, Chapter 2.4.

pyridones **15a** and **15b** which were separated by radial PLC (silica gel, EtOAc/hexanes). The TIPS group was now removed with $TFA/CHCl₃$ to afford the corresponding intermediates **4a** and **4b** in 64% and 56% yields, respectively. The stereochemical assignments for diastereomers **15** and **4** were tentative initially, but they were confirmed through the results obtained from the subsequent photochemical studies.10

Irradiation of photosubstrate **4a** in acetonitrile (450-W Hanovia Hg lamp, $8 h$ ¹¹ gave a 25% yield of a white solid, mp 125-⁶ °C (Scheme 6). Single-crystal X-ray analysis showed that the photocycloaddition did not proceed to give the desired product but instead provided the pentacyclic cyclopropanol **16**. Examination of the literature indicated that the cyclopropane ring formation probably resulted from a secondary photoinitiated reaction on the primary adduct.¹²

In an attempt to prevent the secondary cyclization, the photocycloaddition was repeated using a Vycor filter (>²¹⁰ nm). After 2 h, the starting material was gone, and only one product was observed by TLC. Chromatographic purification afforded a 55% yield of the photoadduct as a white solid, mp $152-3$ °C. Single-crystal X-ray analysis confirmed that the reaction proceeded in the desired manner with complete control of stereochemistry to provide tetracyclic ketone **17**. The observed facial selectivity was anticipated on the basis of our earlier photochemical studies of 2,3-dihydro-4 pyridones.¹³ Due to $A^{(1,3)}$ strain, the isobutyl group of $4a$ occupies an axial orientation, and cyclization takes place on the more accessible alkene face opposite the large C-2 substituent.

This successful model study lends credence to our proposed plan for the total synthesis of spirolucidine (**1**). Although the cyclobutane cleavage of **17** was not investigated, the required regioselective ring opening of similar ring systems has been carried out in our laboratories.13 Further synthetic studies toward **1** are underway and will be reported in due course.14

Acknowledgment. We express appreciation to the National Institutes of Health (Grant GM 34442) for financial support of this research. A.W. also thanks the NIH for a

⁽¹⁰⁾ Under the conditions used for the photocyclization of **4a**, irradiation of **4b** gave only recovered starting material.

⁽¹¹⁾ For recent reviews of $[2 + 2]$ photocycloaddition, see: (a) Schuster, D. I.; Lem, G.; Kaprinidis, N. A. *Chem. Re*V*.* **¹⁹⁹³**, *⁹³*, 3-22. (b) De Keukeleire, D.; He, S.-L. *Chem. Re*V*.* **¹⁹⁹³**, *⁹³*, 359-380. (c) Crimmins, M. T.; Reinhold, T. L. *Org. React.* **¹⁹⁹³**, *⁴⁴*, 297-588. (d) Winkler, J. D.; Bowen, C. M.; Liotta, F. *Chem. Re*V*.* **¹⁹⁹⁵**, *⁹⁵*, 2003-2020.

⁽¹²⁾ Related photochemical cyclopropanol syntheses have been reported, see: (a) Henning, H. G.; Haber, H.; Buchholz, H. *Pharm.* **1981**, *36*, 160. (b) Henning, H. G.; Berlinghoff, R.; Hahlow, A.; Koeppl, H. *J. Prakt. Chem.* **1981**, *323*, 914. (c) Wyss, C.; Batra, R.; Lehmann, C.; Sauer, S.; Giese, B. *Angew. Chem., Int. Ed. Engl.* **1996**, *35*, 2529. (d) Sauer, S.; Schumacher, A.; Barbosa, F.; Giese, B. *Tetrahedron Lett.* **1998**, *39*, 3685. (e) Boyle, P. H.; Nelson, P. H.; Sunder-Plassmann, P.; Crabbe, P.; Edwards, J. A.; Green, D.; Iriarte, J.; Murphy, J. W.; Zderic, J.; Fried, J. H. *Proc. Int. Symp. Drug Res.* **¹⁹⁶⁷**, 206-16.

^{(13) (}a) Comins, D. L.; Zheng, X. *J. Chem. Soc.*, *Chem. Commun.* **1994**, 2681. (b) Comins, D. L.; Lee, Y. S.; Boyle, P. D. *Tetrahedron Lett.* **1998**, *39*, 187. (c) Comins, D. L.; Zhang, Y.-M.; Zheng, X. *J. Chem. Soc., Chem. Commun.* **1998**, 2509.

⁽¹⁴⁾ The structure assigned to each new compound is in accordance with its IR, ¹H NMR, and ¹³C NMR spectra and elemental analysis or highresolution mass spectra.

Minority Graduate Research Assistantship. The authors thank Dr. Paul Boyle for X-ray crystallographic analyses of **16** and **17**. NMR and mass spectra and X-ray data were obtained at NCSU instrumentation laboratories, which were established by grants from the North Carolina Biotechnology Center and the National Science Foundation (Grants CHE-9509532, CHE-0078253, CHE-9509532).

Supporting Information Available: Characterization data for compounds $4-6$, $8-9$, and $11-17$, ¹H and ¹³C NMR
spectra of $4-6$, 13 , 16 , and 17 , and OPTEP plots and Y ray spectra of **⁴**-**6**, **¹³**, **¹⁶**, and **¹⁷**, and ORTEP plots and X-ray crystal data (cif format) for **16** and **17**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL016556O